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The critical behavior of an equilibrium shape of a crystal with the size much 
larger than the capillary length is studied near the faceting phase transition 
point. 
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1. INTRODUCTION 

Faceting phase transitions have recently attracted special attention in view of 
studying surface properties of solid helium. Contrary to ordinary crystals, in 
solid helium quantum processes of particle tunneling (1) are of major 
significance, so that an equilibrium crystal shape sets in for anomalously 
small times ~2'3). On the other hand, faceting phase transitions have been 
observed in solid helium. (4'5'3) Although the concept of such transitions was 
introduced by Burton, Cabrera, and Frank (6'7) many years ago, they were 
observed in ordinary crystals only qualitatively, the major difficulty being 
caused by enormous equilibrium-shape establishment times. In helium 
crystals this difficulty is lifted, so there arises a unique opportunity for 
experimentally studying the thermodynamics of such transitions, which is 
common for classical and quantum crystals. 

Faceting is a phase transition between two different states of a 
surface--atomically rough and atomically smooth. It is therefore obvious 
that the problem of establishing the nature of a phase transition depends on 
the choice of a particular order parameter characterizing this transition. 
There are two approaches to the problem. The first one (8'9) is based on the 
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definition according to which the surface is smooth or rough, depending on 
whether the mean-square amplitude of surface fluctuations about the 
equilibrium position is finite or infinite (in the thermodynamic limit in the 
absence of gravity). The second approach is directly related to studying the 
surface energy as a function of surface orientation, tl~ In this case, the 
surface is assumed to be rough or smooth, depending on whether the 
function describing the angular dependence of the surface energy is analytic 
or has a cusp. Although at finite temperatures any surface with analytic 
surface energy is characterized by infinite (in the above sense) fluctuations, 
these two definitions are by no means equivalent, the difference being most 
striking at zero temperature. As was shown in Ref. 2, quantum 
delocalization of steps on the surface may lead (and for high-index surfaces 
does lead) to the fact that the crystal surface is characterized by an analytic 
surface energy even at zero temperature, while the first criterion (8'9) implies 
that any surface is smooth at zero temperature. It should be stressed here 
that the free surface of liquid helium at zero temperature is smooth in the 
sense of the first definition, but rough in the sense of the second definition. 
As was noted above, at finite temperatures both definitions coincide. 
However, from the point of view of the second approach the divergence of 
the fluctuation displacement is a secondary effect, rather than the primary 
one. Let us elucidate the situation, using an analogy with the case of proper 
and improper ferroelectrics known in the theory of ordinary secind-order 
phase transitions. In proper ferroelectrics spontaneous polarization is an 
order parameter responsible for the phase transition. In improper 
ferroelectrics, the order parameter has another origin, and the phase tran- 
sition is accompanied with the onset of spontaneous polarization as a 
secondary effect. It is known (11) that the thermodynamics of the phase tran- 
sition is quite distinct in these two cases. 

The previous thermodynamic mean-field theory of faceting phase 
transitions (1~ predicts an equilibrium shape near the phase transition point 
only for sufficiently small crystals, much smaller than the capillary constant 
(about 1 mm for solid helium). Experimental results obtained by Keshishev, 
Parshin, and Babkin (3) (see also Ref. 12) agree qualitatively with the theory. 
Quantitative comparison is difficult because experiments are usually 
performed with bulk samples, for which gravity and interaction of the 
surface with vessel walls become significant. In the present paper the results 
of Ref. 10 are extended to this case, and it is shown that in most important 
situations, near the phase transition point, the shape of the surface (over the 
main are) virtually does not depend on the character of interaction with the 
walls, but strongly depends on the vessel size. This interesting circumstance 
is very significant from an experimental point of view. 
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2. TEMPERATURE DEPENDENCE OF THE FACET SIZE 

The problem of calculating the shape of a crystal near the faceting 
phase transition point is usually stated as follows. Suppose the space between 
the waals of a vessel formed by two parallel vertical planes separated by a 
distance of 2L is filled with a crystal (in the lower part) and a liquid, which 
is in equilibrium with the crystal. At a temperature T, below the transition 
point T c, the interface has a flat part (Fig. la) whose length 21 depends on 
temperature and vanishes at T =  To. For T > T~ (Fig. lb) the interface does 
not have singularities. What we need is to derive an equation z = z(x) of the 
equilibrium interface, where the axis z is vertical and the axis x is normal to 
the walls. 

In a general case, the situation depends, naturally, on the crystal lattice 
orientation relative to the walls. Below we shall consider the most symmetric 
configurations, which are important from the experimental point of view. Of 
most interest in 4He crystals are faceting phase transitions on the basal plane 
perpendicular to the six-fold symmetry axis, and also those on the faces 
normal to the two-fold symmetry axis and to two symmetry planes. These 
transitions can easily be observed experimentally. In 3He crystals faceting 
transitions have not so far been observed, but, if there be any, they are most 
likely to occur on the basal faces normal to the four-fold symmetry axis and 
to two symmetry planes. We shall perform calculations precisely for these 
cases, assuming the crystal to be so oriented that its symmetry axis is 
vertical. Furthermore, we shall assume that in the case of the four-fold 
symmetry axis one of the symmetry planes is parallel to the walls. According 

(a) 

Fig. 1. Crystal shape. (a) Below the transition point. (b) Above the transition point. 
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to Ref. 10, if a faceting phase transition takes place on the face normal to the 
two-fold symmetry axis, the surface is flat along one direction only (we shall 
assume that this direction is perpendicular to the walls). In all the cases 
discussed here the shape of the surface is such that the function z(x) can be 
considered symmetric, i.e., z ( x )=  z ( -x ) .  

For T < T c the total surface free energy per unit length along the y axis 
is 

J - = 2 f ( O ) l + 2 f l  f ( z ' ) d x + p g z Z ( O ) l + p g  z Z d x + 2 E s  (1) 

where prime denotes differentiation with respect to x, 
f = f ( z ' )  = a(z')(1 + z'Z) 1/2, a(z') is the anisotropic surface energy per unit 
area of the crystal-liquid interface, g is acceleration due to gravity, 
P = P c -  Pt, Pc and Pt are the densities of the crystal and liquid, respectively; 
Es is the interface-wall interaction energy [it depends on z(L)]. The free 
energy 3 -  must be minimal for a given crystal volume. By appropriately 
choosing the origin of the z axis, we can write the condition that the volume 
is constant in the form 

/ -  L 

I . z(O) + Jl z d x = O  (2) 

Using (1) and (2), and also the condition z(1) = z(0) that the function 
z(x) is continuous, one can easily verify that the condition 6]- /b l  = 0 that 
the free energy is minimal with respect to the flat part area is reduced to the 
continuity of f ( z (x ) )  at x = 1. After simple transformations, the variation of 
free energy (1) can be represented as 

8E, 
= r / ( f )  +  z(L) 1 

(3) 

where r/(x) = Of/~z', r/0 = r/(1 + 0), the derivative of E,  with respect to z(L) 
depends on the properties of the vessel walls and is equal to the difference 
a s - a  l between the surface energies of the crystal-wall and liquid-wall 
interfaces, respectively. 

The condition that the free energy is minimal gives, by virtue of (3), the 
equation for calculating an equilibrium crystal shape 

--pg[z -- z(0)] = 0 (4) r/' 1 

and the boundary condition r/(L) = r/s, where r/s =- a~ -- a s. 
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The thermodynamic properties of the interface are determined by the 
thermodynamic potential f ( z ' )  satisfying the identity d f =  tl dz' .  Let us make 
the Legendre transformation by introducing the variable r/instead of z'  and 
a new thermodynamic potential f = f - z ' t l  satisfying the identity 
d r = - z '  d~. It can easily be seen that the derivative r / ' = -  df/dz,  so that 
the first integral of Eq. (4) is 

)~(r/) --aY(r/o) + [z -- z(0)] + --~pg[z -- z(0)] 2 = 0 (5) 

If the potential f(r/) is known, the latter formula establishes a 
relationship r/ and z, and the surface shape is found by integrating the 
relation dx = -  d~ff(df/dz). In the case of T < T c of most interest is to 
calculate the area of the flat part. Precisely this quantity acts as a specific 
order parameter that characterizes the phase transition in question. Using 
(5), we obtain 

~lL I~,r dr/ 
L - - I =  d x = - S ' n o  (df/dz~ dtl - ~-Inol {~12/I2-2pg[f(rl)-JT(no)]} 1/2 (6) 

The particular form of the potential f is different for faces of different 
symmetry, (1~ but since the problem is one dimensional, in all the cases 
considered above we can use the same expression: 

at tl 2 b ~I 4 if(t/) =fo(t) -- f -- T (7) 

Here fo(t) does not depend on r/, a and b are positive constants, t = T -  T c. 
Since z ' ( r / ) = - d f / d t  1 and the parameter r/0 is defined by z'(r/0)= 0, we 
obtain 

b ' 

b 
- d ( , o )  --  T _ 1)2 

where ~ = I r//r/0 I. Substitution into (6) yields 

L -- l =  rg [(~2 _ 1)z + (rg/l)2] ,/2 (8) 

where rg - rg(t) = (2/pga I tl) 1/z. 
As far as Eq. (8) is concerned, we should point out the following. Since 

in the derivation of this equation we used expansion (7) in the powers of r/, 
this form of Eq. (8) is valid only when the limiting value t/, of r/is small in 
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comparison with the characteristic surface energy a. The experimental values 
of the contact angle z ' (L )  ~ 1, so that t/s ~ a. The fact is, however, that in 
the case of interest where the vessel size L is much larger than the capillary 
constant 

r~O) ~ rg(t) lt/Tc [ 1/2 ~ (a/pg)l/2 ~.. 1 mm 

and the temperature T is close to To, the major contribution to integral (8) is 
due to the region of small r/. Using relations derived above, it is a simple 
matter to verify that this contribution is caused by those values of ~ which 
are small as compared with a/No, so that the upper limit in (8) can be set 
equal to infinity. Thus, the final relation 

L -- l =  rg [(~z _ 1)2 + (re/l)21,/2 (9) 

for determining l virtually does not depend on the wall properties. Far from 
the transition point, i.e., for Itl~Zc, the quantity rg appearing in (9) 
coincides, by an order of magnitude, with the capillary constant r r176 As - g  �9 

t ~  0, rg grows infinitely as tt[ -1/2. In a sufficiently small neighborhood of 
the transition point the inequality L ~ rg holds, and we obtain from (9) 

-- (10) l F4(3/4) rg 

where F(x) is a gamma function. The size of the flat area is proportional to 
the vessel size squared and vanishes for t ~ 0  as Itl 1/2, i.e., as the order 
parameter in the mean-field theory for ordinary second-order phase tran- 
sitions. 

If the temperature is not too close to the transition point, L >> r e and 
from (9) we find to within the logarithmic accuracy 

rg L 
l = L - ~ - l n - -  (111 

rg 

3. CRYSTAL SHAPE ABOVE THE TRANSITION POINT 

For T > T c the interface does not have a flat part (Fig. lb) and the 
equilibrium shape is determined from the condition that relation (1) (with 
l = 0) is minimal under the condition 

L 

~i z dx = const 
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The corresponding equation of equilibrium 

q' - pgz + ~ , =  0 

where 2 is a Lagrangian multiplier, has the first integral 

jz(rl)--f(O) + lpgz2 = )~z (12) 

Integrating the relation dx =-dtl/(8f/c3z) and using Eqs. (7) and (12), 
we obtain the implicit expression for the function r/(x) 

x f l  d~ (13) - - z  
rg (~4 + 2~2 +A2)1/2 

where ~ =  rl(b/at) 1/2 and A = ~,(2b/pgaZt2) 1/2 is a constant determined from 
the boundary condition t / (L)=  r/s. The equilibrium surface shape is defined 
by Eq. (13) and by the relation 

_ & / -  (~+ff3) (14) 

Let the temperature be so close to the critical temperature that rg >~ t .  
Then from (13) and (14) we find for x > 0 

( 2 )1/2 r4(1/4)  
I z ' l =  \ p ~ ]  16zcL2 atx (15) 

for x ~ L 2/rg ; 

fo r  L 2/rg ,~ x ,~ L; 

( 2  ]3/2b_,/2 [F4(1/4)  3 
I z ' l =  \~j L ~ ] x 3 (16) 

2 / 3/2 3 
Iz ' l= \ ~ ]  b - 1 / E ( L - x ) -  (17) 

for _~o) ~ IL - x l  ~ L [the corresponding relations for x < 0 are obtained by tg  

using the condition z (x )= z(-x)] .  
In the immediate proximity to the wall, for I t - - x l  ~< r~ ~ the surface 

shape depends both on the behavior of the potential J= for not very small r/ 
and on the particular value of the parameter r/s, so that this shape cannot be 
calculated in a general case. 

For temperatures not too close to T C, such that rg ~ L, we obtain 

IZ'I= (32~g)l/2a212xexp (-Vf2~g) ( 1 8 )  

822/38/1 2 13 
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for x ~ rg, and Eq. (14), in which 

= V/2 (19) 
s i n h [ v / 2  (L -- x)/rg] 

for x >> rg. 
It should be noted that  if the t ransi t ion point  is approached  from the 

region of  higher temperatures,  the interface curvature z" (0 )  at tile center of  
the vessel first increases exponent ial ly ,  in accordance  with Eq. (18), and only 

for t ~ Tc(r~~ 2 drops p ropor t iona l ly  to t, in accordance  with Eq. (15). 
By dedicat ing this paper  to the memory  of  late I lya  Mikhai lovich  

Lifshitz, we highlight a profound impact  he exerted on the advancement  in 
this field of  physics.  
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